Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction

نویسندگان

چکیده

A novel freeze-drying accompanied by direct pyrolysis method was conducted to fabricate porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles (Co2[email protected]) using deoxyribonucleic acid (DNA). DNA, for the first time, is used as a precursor of carbon substrate, well an in-situ source preparation Co2P. Benefiting from and carbon, Co2[email protected] shows excellent performance toward hydrogen evolution reaction (HER). Moreover, shell can successfully prevent corrosion or decomposition, it ensures good interface stability. These results may provide strategy design synthesis encapsulated metal phosphides electrocatalysts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intumescent flame retardant-derived P,N co-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction.

An intumescent flame retardant (IFR), including melamine (MA), ammonium polyphosphate (APP), and polydopamine (PDA), was utilized as the precursor to prepare P,N co-doped hierarchically porous carbon which exhibited high electrocatalytic activity and durability for the oxygen reduction reaction (ORR). This finding indicates that an ingenious design of the precursor can lead to functional carbon...

متن کامل

CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction.

Development of a non-noble-metal hydrogen-producing catalyst is essential to the development of solar water-splitting devices. Improving both the activity and the stability of the catalyst remains a key challenge. In this Communication, we describe a two-step reaction for preparing three-dimensional electrodes composed of CoSe2 nanoparticles grown on carbon fiber paper. The electrode exhibits e...

متن کامل

Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping N‐Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media

Molybdenum carbide (Mo2C) is recognized as an alternative electrocatalyst to noble metal for the hydrogen evolution reaction (HER). Herein, a facile, low cost, and scalable method is provided for the fabrication of Mo2C-based eletrocatalyst (Mo2C/G-NCS) by a spray-drying, and followed by annealing. As-prepared Mo2C/G-NCS electrocatalyst displays that ultrafine Mo2C nanopartilces are uniformly e...

متن کامل

Nanostructured SnS-N-doped graphene as an advanced electrocatalyst for the hydrogen evolution reaction.

The hydrogen evolution reaction (HER) via water splitting requires the development of advanced and inexpensive electrocatalysts to replace expensive platinum (Pt)-based catalysts. The scalable hydrothermal synthesis of SnS on N-reduced graphene (N-rGr) sheets is presented for the first time, which is used as a highly-active electrocatalyst with long-term stability in acidic, neutral, and alkali...

متن کامل

Flexible and porous catalyst electrodes constructed by Co nanoparticles@nitrogen-doped graphene films for highly efficient hydrogen evolution

The development of electrodes composed of non-noble-metal catalysts with both excellent activity and high stability for the hydrogen evolution reaction (HER) is essential for hydrogen production. In this work, a flexible and robust film electrode based on cobalt nanoparticles embedded into the interlamination of N-doped graphene film (Co@NGF) is fabricated by simple vacuum filtration combined w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electrochimica Acta

سال: 2021

ISSN: ['1873-3859', '0013-4686']

DOI: https://doi.org/10.1016/j.electacta.2021.139051